Восстановление динозавров. Можно ли вернуть в этот мир динозавров? Динозавры – ровесники человека

Пропитки 29.03.2024

В июне на больших экранах вышла , вызвав у любопытных зрителей новую порцию вопросов о его научной правдоподобности. Можно ли воскресить динозавров, используя описанный фантастами метод?

На этот вопрос в колонке для The Conversation ответил Даррен Гриффин, профессор генетики из Кентского университета.

Как клонировали динозавров в «Парке юрского периода»

«Во-первых, идея о том, что неповрежденная ДНК динозавров сохранится внутри застывших в янтаре кровососущих насекомых попросту нескладная, — пишет Гриффин. — Доисторических москитов, пивших кровь динозавров, действительно находили. Но содержащаяся в этой крови ДНК давно деградировала.

В отличие от неандертальцев и шерстистых мамонтов, чью ДНК успешно изолировали, динозавры слишком древние. Самой старой среди когда-либо обнаруженных ДНК всего около миллиона лет. Но чтобы получить ДНК динозавра, нам пришлось бы вернуться как минимум на 66 млн лет назад.

Во-вторых, даже если бы мы могли извлечь ДНК динозавров, она была бы измельчена на миллионы крошечных частиц, и мы бы понятия не имели, как их упорядочить. Это было бы похоже на попытку собрать самый сложный пазл в мире, не представляя, как выглядит исходное изображение и сколько в нем должно быть фрагментов.

В «Парке юрского периода» ученые находят эти недостающие фрагменты и заполняют их ДНК лягушки. Но это не даст вам динозавра. Это даст гибрид или« лягушкозавра». Было бы также более разумно использовать ДНК птицы, поскольку они более тесно связаны с динозаврами(хотя это все равно не сработает).

В-третьих, идея, что для восстановления животного нужен всего лишь виток ДНК — научная фантастика. ДНК является отправной точкой, но развитие животного внутри яйца представляет собой сложный« танец» генов, включающихся и включающихся в нужное время.

Короче говоря, вам нужны идеальное яйцо динозавра и вся сложная химия, содержащаяся в нем. В книге ученые производят искусственные яйца, в фильмах используют страусиные. Ни один из этих способов не сработает. Нельзя положить куриную ДНК внутрь страусиного яйца и получить цыпленка(а люди пытались). То же самое можно сказать о велоцирапторе".

Генетик в пух и прах разносит мечты наивных поклонников фантастической франшизы, но подчеркивает, что в будущем подобную технологию можно будет использовать для того, чтобы компенсировать часть вреда, причиненного животным людьми.

«Человечество застало исчезновение птиц — додо и странствующего голубя. Восстановление их ДНК, возраст которой составляет всего несколько сотен лет, является гораздо более реалистичным предложением. Возможно также, что яйца живущих ныне генетически близких видов станут достаточно хорошей средой, и мы используем их, чтобы воскресить вымерших животных».

6 января 2000 г. дикая снежная коза по имени Селия была раздавлена падающим деревом на утесах испанских Пиренеев - так началось ее вхождение в историю, пишет New York Post .

Селия была букардо - редким видом дикой козы - и, как это бывает, последним представителем своего вида.

Но у группы испанских ученых были другие идеи на этот счет. Десятью месяцами ранее они взяли образец ткани Селии в надежде уберечь ее вид от исчезновения.

Если бы это сработало, полагает научный журналист Хелен Пилчер в своей новой книге "Возвращение короля: Новая наука о возрождении ", то "стало бы решающим моментом в истории Земли - концом необратимого исчезновения".

Два года спустя "клетки с ДНК Селии были введены в яйцеклетки козы, лишенные собственного генетического материала. После краткого электрического удара яйцеклетки начали делиться".

Эмбрионы подсадили в матки суррогатных матерей-коз, и, хотя большинство беременностей прервалось, одна была удачной.

История свершилась 30 июля 2003 г., когда родился один из клонов Селии, знаменуя первый случай, когда вымерший вид возвращался из небытия. К сожалению, ее здоровье не выдержало. Ее легкие были "глубоко деформированы", и она умерла семь минут спустя - впервые в истории вид исчез дважды.

Многие из нас узнали понятие "возрождение" из фильма "Парк Юрского периода", который ознаменовал возросшую популярность динозавров.

Но эта идея не была диким изобретением голливудского сценариста.

Пилчер пишет, что в 1980-х Джон Ткач, основатель "подпольной группы ученых и клинических врачей в Бозмене, Монтана", называвших себя Исследовательская группа вымерших ДНК, поставил интригующий мысленный эксперимент.

"Что, если много миллионов лет назад голодный москит, который обедал на динозавре, угодил в янтарь прямо вместе со своим последним ужином в желудке? Если бы можно было получить клетку крови динозавра из этого москита и подсадить ее в яйцеклетку, из которой удалили собственную ДНК", возможно, удалось бы "вырастить динозавра".

Эта теория была неправдоподобной, но не полностью сумасшедшей. Энтомолог Джордж Пойнар из Калифорнийского университета в Беркли посвятил свою карьеру изучению насекомых, которые миллионы лет назад застряли в смоле деревьев, превратившейся в янтарь. Внешне они обычно были целыми, но их внутренности были в "удручающем хаосе", однако в 1980 г. он нашел муху, которая "бросила вызов ожиданию", - ее клетки оставались неповрежденными в течение 40 млн лет. Это было именно то, о чем теоретизировал Ткач.

Публикация открытий Пойнара взволновала научное сообщество, включая "высокого, неуклюжего человека", который посетил его лабораторию, чтобы задать вопросы о "воскрешении форм жизни из янтаря". Пойнар не вспоминал об этом, пока несколько лет спустя ему не сообщили, что в новой книге, которая скоро станет фильмом под названием "Парк Юрского периода", ему выражают благодарность. Автор книги Майкл Крайтон, который и был высоким, неуклюжим посетителем, "использовал (этот визит) как научную основу для своего романа".

Так что же происходит с попытками возродить динозавров сейчас, несколько десятилетий спустя? "Живущий в наше динозавр - не фантазия", - пишет Пилчер в своей книге. Но, хотя есть уважаемые ученые, полагающие, что это возможно, она также объясняет, что мы не должны раскатывать губу. В конце концов, найти материал для создания динозавра - задача, мягко говоря, не из легких.

"Чтобы возродить животное, вам нужен источник его ДНК, - пишет Пилчер. - Но все, что мы имеем для динозавров, - это их окаменевшие останки".

Большую часть информации о динозаврах мы получаем из окаменелостей, а "одна из догм палеонтологии гласит, что когда окаменение завершается, то любой органический след животного исчезает", - пишет Пилчер.

Несмотря на это, начав в 1992 г., палеонтолог Мэри Швейцер сделала серию открытий, среди прочего определив, что окаменелости динозавра "содержат молекулы, которые найдены в эритроцитах", и что определенные типы тканей динозавра могли "пережить окаменение".

Продолжая свою работу, она выявила, что молекулы белка также уцелели, побудив газету The Guardian написать, что результаты ее исследования "дразнят возможностью, что ученые могут однажды смогут посоперничать с "Парком Юрского периода", успешно клонировав динозавра".

Однако это только первый шаг в обнаружении достаточного количества генетического материала динозавров для их воссоздания.

"Хотя динозавры состояли из белка (и многих других молекул), мы не можем каким-либо образом восстановить одну из нескольких разрозненных частиц коллагена. Это похоже на попытку построить корабль Lego Тысячелетний сокол из Звездных войн, состоящий из 5195 кусочков, всего из нескольких кирпичиков и картинки на коробке", - пишет Пилчер. - Без инструкций невозможно узнать, какими должны быть другие кирпичики или как их соединить".

Эти "инструкции" также известны как ДНК, и все еще неясно, как долго такая "безнадежно непрочная молекула" может выживать. В 1990-х заявлялось, что серия находок восстановила ДНК, начиная со 120 млн лет назад, включая ДНК кости динозавра возрастом 80 млн лет. Эти заявления были разоблачены лауреатом Нобелевской премии, биохимиком Томасом Линдалем, который показал, что "из-за того, каким образом расщепляется ДНК, она просто не может сохраниться в течение всего этого времени".

Его правота подтвердилась в 2012 г. исследованием, "которое установило, что у ДНК есть период полураспада, равный всего 521 г.". Это означает, что "через 6,8 млн лет каждая связь была бы разрушена, делая восстановление ДНК из окаменелостей, которые еще старше, абсолютно невозможным".

Получается, что не было никакой ДНК в ископаемых, найденных в 1990-х и что эксперименты случайно "развили части современной ДНК из окружающей среды". Недавно, используя более современное оборудование, ученые смогли подтвердить, что самая старая ДНК, найденная на сегодняшний день, принадлежала "лошади возрастом 700 тыс. лет, которую нашли замороженной в канадской вечной мерзлоте", и что самая старая ДНК человека получена из "гоминини (один из видов древних людей) возрастом 400 тыс. лет, найденного в подземной пещере в горах Атапуэрка в Испании".

Динозавры вымерли приблизительно 65 млн лет назад. Таким образом, хотя недавно найденный в янтаре хвост динозавра возрастом 99 млн лет, содержавший кости, мягкие ткани и перья, взбудоражил ученых, изучающих древних животных, распад ДНК означает, что это не поможет их возродить.

Тем не менее Швейцер полагает, что обнаружение ДНК динозавра однажды может стать возможным. "Если нашелся способ получить ДНК из ископаемого, которому 700 тыс. лет, то почему не миллион? - сказала она Пилчер. - А если удастся получить ДНК из миллионнолетнего ископаемого, то может удастся и из того, чей возраст 7 или даже 70 млн лет?"

Эти поиски были делом всей жизни Швейцер, и она продолжает их по сей день. Есть некоторые ученые, включая босса Швейцер, Джека Хорнера, научного консультанта по "Парку Юрского периода" и вдохновителя для персонажа Сэма Нила в фильме, которые задаются вопросом, возможно ли возродить динозавров другим способом.

"Хорнер полагает, что смог бы создать динозавра всего за 10 лет, причем без необходимости прибегать к древней ДНК, - пишет Пилчер. - Все, что ему нужно сделать, это обернуть эволюцию вспять". Первый шаг в этом деле - начать с современного потомка динозавра. Это легкая часть, поскольку птицы и аллигаторы - эволюционные потомки тероподов, разновидности двуногих динозавров, к которым относится и Tи-Рекс.

Идея Хорнера состоит в том, чтобы взять эмбрион современной птицы и каким-то образом отобрать его древние эволюционные характеристики, учитывая, что "иногда в современной живности заметно проявляются древние особенности". Хорнеру предстоит узнать, каковы инструкции, а затем обнаружить способ реактивировать их,- пишет Пилчер.

"Экспериментируя с программами развития эмбрионов цыплят, он надеется убедить их выпустить своего внутреннего динозавра; развивать присущие динозаврам характеристики вроде зубов и хвостов". Короче говоря, Хорнер пытается вывести цыплят, которые будут больше похожи на динозавров. Несмотря на это, шансы на возрождение динозавров примерно равны шансу увидеть одного из них за рулем такси Uber.

Ученые в настоящее время пробуют возродить такие генетически разнообразные виды, как дронт, странствующий голубь и шерстистый мамонт, но натолкнулись на препятствия, включая отсутствие ДНК, отсутствие надлежащей инкубационной среды и риск жестокости по отношению к потенциальным суррогатам.

Ну а если с более положительной стороны, то Пилчер пишет, что наука о возрождении может помочь препятствовать вымиранию видов. "Есть много проектов, в которых люди умышленно отбирают клетки у находящихся в опасности животных, [включая] сбор сбитых на дороге животных и взятие клеток у них", - говорит Пилчер. - Целые музеи набиты всеми этими чучелами животных, и хотя у них нет живых клеток, очень часто имеются мертвые клетки, содержащие ДНК".

Она отмечает, например, что в мире осталось только три северных белых носорога, которые не в состоянии воспроизвести потомство из-за возраста и других факторов. Ученые уже взяли клетки кожи у носорогов в надежде однажды преобразовать материал сначала в стволовые клетки, а затем в яйцеклетки, которые могут быть оплодотворены образцами спермы, также ими полученные. По словам Пилчер, весьма возможно, что ученые смогут вывести северного белого носорога в пробирке в течение следующих трех-десяти лет.

Однако если вы действительно хотите увидеть оживших динозавров, лучше отметьте в своих календарях 2018 г., когда будет выпущен следующий сиквел "Парка Юрского периода".

А если быть абсолютно точными, то по завершению их работы над данным проектом, в результате должна получиться этакая курица с чешуей, обладающая передними конечностями и даже зубами.

Кстати, именно Хорнер консультировал Спилберга во время его работы над известным кинофильмом «Парк Юрского периода».

Помимо этого, Джек создал себе репутацию в научном кругу, благодаря опубликованию своего труда под названием «Как построить динозавра».

Но почему же именно курица? Она попала под пристальное внимание генетиков не случайно. Подобные опыты несколько лет назад уже проводили учёные из Висконсинского университета. Тогда они ставили всяческие эксперименты над куриными эмбрионами.

Они не могли не заметить некоторых странностей, которые заключались в том, что на челюстях куриного зародыша сначала появлялись, а спустя некоторое время пропадали выросты, которые имели сходство с так называемыми саблевидными зубами, имеющимися у аллигаторов.

Изучив состав генов-мутантов, учёные нашли ген, который убивал их до рождения птицы. Помимо этого, был найден также и другой побочный эффект, то есть, еще один ген, призванный отвечать за появление зубов, схожих с динозавровскими.

Этот ген находился в дремлющем состоянии уже более 70 миллионов лет. Ученые Фэллон и Харрис, которые проводили исследования куриного ДНК, создали особый вирус, проявляющий себя наподобие этих генов. После его введения эмбрионы не умирали, у них попросту начинали расти зубы.

После того, как куриные эмбрионы были изучены более детально, ученые из Университета имени Макгилла обнаружили у зародышей на самых ранних стадиях их развития зачатки хвостов, похожих на хвосты всё тех же динозавров.

Но в ходе развития эмбриона наступал определенный момент, когда срабатывал скрытый генетический механизм, в результате его действия хвост куда-то исчезал. Теперь ученые озабочены тем, что пытаются «возвратить» хвост обратно.

Конечно, добиться поставленной цели очень сложно, но энтузиасты уверены, что если «нажать» на скрытые генетические «рычаги», успех опытов не заставит себя долго ждать.

В случае успеха данных исследований, ученые планируют сделать попытку возродить древнего тираннозавра. Вполне закономерно, что их планы подверглись серьезной критике среди представителей научного сообщества, однако, несмотря на недоверие, исследователи продолжают настаивать, что при современном развитии науки – в их задумке нет ничего невозможно.

Если ученым всё-таки удастся добиться желаемого результата, это сможет в корне поменять некоторые взгляды на эволюционный процесс и, возможно, даже придется переписывать известные научные труды об эволюции.

С тех пор, как палеонтолог университета Северной Каролины Мэри Швейцер (Mary Schweitzer) обнаружила в окаменелостях динозавров их мягкие ткан и, перед современной наукой о древних существах встал вопрос: сможем ли мы когда-нибудь найти подлинную ДНК динозавров ?

И если да, то не удастся ли нам с ее помощью воссоздать этих удивительных животных?

Дать однозначные ответы на эти вопросы не так-то просто, но доктор Швейцер все же согласилась помочь нам понять, что мы знаем сегодня о генетическом материале динозавров и на что можем рассчитывать в будущем.

Можем ли мы получить ДНК из окаменелостей?

Этот вопрос следует понимать как "можем ли мы получить динозавровую ДНК"? Кости состоят из минерала гидроксиапатита, который имеет настолько высокое сродство с ДНК и многими белками, что активно используется сегодня в лабораториях для очистки их молекул. Кости динозавров 65 млн лет пролежали в земле, и достаточно велика вероятность, что если начать активно искать в них молекулы ДНК, то вполне можно и найти.

Просто потому, что некоторые биомолекулы могут приклеиться к этому минералу, как к липучке. Проблема, однако, будет заключаться не столько в том, чтобы просто найти ДНК в костях динозавров, сколько в том, чтобы доказать, что эти молекулы принадлежат именно динозаврам, а не появились из каких-то других возможных источников.

Сможем ли мы когда-нибудь восстановить подлинную ДНК из кости динозавра? Научный ответ - да. Все возможно, пока не доказано обратное. Способны ли мы сейчас доказать невозможность извлечения динозавровой ДНК? Нет, не способны. Есть ли у нас уже подлинная молекула с генами динозавра? Нет, этот вопрос пока остается открытым.

Как долго ДНК может сохраняться в геологической летописи и как доказать, что она принадлежит именно динозавру, а не попала в образец уже в лаборатории вместе с каким-нибудь загрязнителем?

Многие ученые считают, что у ДНК довольно короткий срок годности. По их мнению, эти молекулы вряд ли смогут сохраниться дольше, чем миллион лет, и уж конечно, не более пяти-шести миллионов лет в самом лучшем случае. Такая позиция лишает нас надежды увидеть ДНК существ, живших свыше 65 млн лет назад. Но откуда взялись эти цифры?

Занимавшиеся этой проблемой ученые помещали молекулы ДНК в горячую кислоту и засекали время, которое необходимо для их распада. Высокие температура и кислотность использовались в качестве "заменителей" длительных временных промежутков. Согласно выводам исследователей, ДНК распадается довольно быстро.

Результаты одной из таких работ, сопоставлявшей количество молекул ДНК, успешно извлекаемых из образцов разного возраста - от нескольких сотен до 8000 лет - показали, что с возрастом количество извлекаемых молекул снижается.

Ученые даже смогли смоделировать "скорость распада" и предсказали, хотя и не проверили это утверждение, что обнаружить ДНК в кости мелового возраста крайне маловероятно. Как ни странно, но это же исследование показало, что возраст сам по себе не может объяснить распад или сохранение ДНК.

С другой стороны, у нас есть четыре независимых линии доказательств того, что молекулы, химически схожие с ДНК, могут локализовываться в клетках наших собственных костей, и это хорошо согласуется с тем, чтобы ожидать таких находок в костях динозавров.

Итак, если мы выделим ДНК из костей, принадлежащих динозаврам, как нам убедиться, что это не результат позднейшего загрязнения?

Идея о том, что ДНК может сохраняться так долго, действительно имеет довольно мало шансов на успех, поэтому любое заявление о находке или восстановлении настоящей динозавровой ДНК должно соответствовать самым строгим критериям.

Мы предлагаем такие:

1. Последовательность ДНК, выделенная из кости, должна соответствовать той, что можно было бы ожидать, основываясь на других данных. Сегодня известно более 300 признаков, связывающих динозавров с птицами, и убедительно доказывающих, что птицы произошли от динозавров-теропод.

Поэтому последовательности ДНК динозавров, полученные из их костей, должны быть больше похожи на генетический материал птиц, чем на ДНК крокодилов, при этом отличаясь и от тех, и от других. Они также будут отличаться и от любых ДНК, происходящих из современных источников.

2. Если динозавровые ДНК будут настоящими, то они, очевидно, окажутся сильно фрагментированы, и их будет сложно анализировать нашими нынешними методами, разработанными для секвенирования здоровой и счастливой современной ДНК.

Если "ДНК тирекса" окажется состоящей из длинных цепочек, относительно легко поддающихся расшифровке, то скорее всего, мы имеем дело с загрязнением, а не подлинной ДНК динозавра.

3. Молекула ДНК считается более хрупкой по сравнению с другими химическим соединениями. Поэтому если в материале присутствуют аутентичные ДНК, то там должны быть и другие, более прочные молекулы, например, коллагена.

При этом связь с птицами и крокодилами должна прослеживаться и у молекул этих более устойчивых соединений. Кроме того, в ископаемом материале могут обнаружиться, например, липиды, составляющие клеточные мембраны. Липиды более устойчивы, чем в среднем белки или те же молекулы ДНК.

4. Если белки и ДНК успешно сохранились с мезозойских времен, их связь с динозаврами должна подтверждаться не только секвенированием, но и другими методами научного исследования. Например, связывание белков со специфическими антителами докажет, что это действительно белки из мягких тканей, а не загрязнение из внешних горных пород.

В наших исследованиях мы смогли успешно локализовать вещество, химически подобное ДНК, внутри клеток кости T. Rex, используя как методы, специфические для ДНК, так и антитела к белкам, ассоциированным с ДНК позвоночных.

5. Наконец, и это, вероятно, самое главное - для всех этапов любого исследования следует применять надлежащий контроль. Наряду с образцами, из которых мы надеемся выделить ДНК, необходимо исследовать и вмещающие породы, а также все химические соединения, используемые в лаборатории. Если и в них также обнаружатся последовательности, представляющие для нас интерес, то скорее всего, это просто загрязняющие вещества.

Так сможем ли мы когда-нибудь клонировать динозавра?

В каком-то смысле. Клонирование, как его обычно проводят в лаборатории, представляет собой вставку известного фрагмента ДНК в бактериальные плазмиды.

Этот фрагмент реплицируется всякий раз, когда делится клетка, что приводит к появлению многих копий идентичных ДНК.

Палеонтолог университета Северной Каролины Мэри Швейцер

Другой метод клонирования предполагает помещение целого комплекта ДНК в жизнеспособные клетки, из которых заранее удален их собственный ядерный материал. Затем такая клетка помещается в организм хозяина, и донорская ДНК начинает управлять формированием и развитием потомства, полностью идентичного донору.

Знаменитая овечка Долли является примером использования как раз данного метода клонирования. Когда люди говорят о "клонировании динозавра", они обычно имеют в виду что-то вроде этого. Однако этот процесс невероятно сложен, и, не смотря на ненаучный характер такого предположения, вероятность того, что мы когда-нибудь сможем преодолеть все нестыковки между фрагментами ДНК из костей динозавров и произвести жизнеспособное потомство, настолько мала, что я отношу ее к разряду "не представляется возможным".

Но только потому, что вероятность создания настоящего Парка юрского периода мизерна, нельзя говорить, будто невозможно восстановить саму исходную ДНК динозавра или другие молекулы из древних останков. На самом деле эти древние молекулы могли бы многое нам рассказать. Ведь все эволюционные изменения должны сперва произойти в генах и отразиться на молекулах ДНК.

Мы также можем многое узнать о долговечности молекул в естественных условиях непосредственно, а не благодаря лабораторным экспериментам. И, наконец, восстановление молекул из образцов ископаемых существ, в том числе динозавров, дает нам важную информацию о происхождении и распространении различных эволюционных инноваций, например, перьев.

Нам предстоит еще многому научиться в молекулярном анализе окаменелостей, и мы должны действовать с максимальной осторожностью, никогда не переоценивая данные, которые получаем. Но мы можем извлечь из молекул, сохранившихся в окаменелостях, столько всего интересного, что это безусловно заслуживает наших усилий.

В последнее время в СМИ все чаще появляются сообщения о том, что ученые уже без всякого труда могут воскресить вымерших 65 миллионов лет назад динозавров. Однако в реальности все не так просто, как представляется тем, кто не знаком со всеми тонкостями данных исследований. Потому что на самом деле воскресить динозавров нельзя. Но создать заново — можно.

"Воскресить" вымершее животное можно лишь двумя путями. Первый из них практиковался еще в ХХ веке. Суть его состоит в том, что если дикий предок каких-нибудь домашних животных вымирает, то можно добиться восстановления его внешнего облика путем избирательного скрещивания между собой представителей самых примитивных пород, происходящих от этого предка. Именно таким способом еще в 70-х годах прошлого столетия немецким биологам удалось "воскресить" вымершего предка (точнее говоря, одного из предков) современных лошадей — тарпана (Equus ferus ferus ).

Скрещивая представителей нескольких пород, в чьих клетках были гены тарпанов (которых истребили в начале ХХ века, то есть не так-то и давно), ученым удалось создать существо, внешний облик которого абсолютно точно соответствовал таковому предковой формы. Впоследствии эти тарпаны были выпущены на волю, и сейчас в Германии и Польше пасется несколько табунов данных животных. Интересно, что за несколько поколений их внешний вид не претерпел существенных изменений — что говорит о том, что "воскрешение" прошло удачно, и данные животные, видимо, действительно содержат большинство генов дикого предка лошади. Однако проверить это невозможно, поскольку генетического банка данных самих тарпанов не сохранилось.

Однако к динозаврам подобный подход не применим — ведь никаких домашних пород этих рептилий нет. Есть, правда, потомки этой группы, то есть птицы и сохранился отряд рептилий, очень близкий к предковой форме "ужасных ящеров" — крокодилы, однако скрещивание представителей этих, весьма далеких друг от друга в эволюционном плане таксонов ничего не даст (да оно и чисто технически невозможно — слишком велика разница в геномах).

Другой способ "воскрешения" основан на создании гибридного эмбриона (подробнее о нем читайте в статье "Чем опасны гибридные эмбрионы? ") . Если ДНК вымершего животного сохранилась в полном объеме, то ее можно пересадить в ядро зародышевой клетки представителя наиболее близкого вида, и, таким образом, вырастить требуемый организм. С птицами и рептилиями это просто — у них все развитие проходит в яйце, а вот зародыша млекопитающего на определенной стадии нужно трансплантировать в тело суррогатной мамы, в роли которой выступает самка того же, наиболее близкого вида (например, в случае "воскрешения" мамонта это будет азиатская слониха). Таким способом биологи планируют "воскресить" мамонта, шерстистого носорога, большерогого оленя и некоторых других доисторических гигантов, а также истребленного в ХХ веке сумчатого волка (подробнее о том, что это такое, читайте в статье "Волки боялись в лес выходить... "), ДНК которых прекрасно сохранилась и, что называется, ждет своего часа.

Однако с динозаврами и этот номер не пройдет — у ученых не имеется ни одного образца ДНК этих гигантов. Дело в том, что последние представители этой группы вымерли около 65 млн. лет тому назад, а за это время все кости этих гигантов успели, что называется, перекристаллизоваться, то есть вся органика в них была замещена на неорганические вещества, поэтому по сути сейчас они представляют собой каменные глыбы, чем-то похожие на части тела динозавров. При таких условиях ДНК сохраниться не может. Кроме того, в мезозойскую эру не было покровных оледенений и вечной мерзлоты, поэтому найти труп "ужасного ящера", который пролежал бы в замороженном состоянии миллионы лет (как это часто бывало с мамонтами), не представляется возможным.

Так что, как видите, "воскресить" динозавров нельзя. Однако ученые убеждены, что их можно создать заново. Правда, это будут уже совсем другие динозавры, не имеющие внешне ничего общего с реально существовавшими гигантами. Но в то же время вполне себе полноценные.

Данная методика основана на том, что гены раннего развития (гомеозисные), которые контролируют формирование первых стадий зародыша — структуры достаточно консервативные, и часто практически в полном объеме сохраняются у потомков. Именно поэтому эмбрион человека на ранних стадиях похож на рыбу, потом на амфибию и только уже после приобретает черты, специфические для млекопитающих. Поэтому и у птиц, конечно же, остались гомеозисные гены динозавров. В процессе формирования эмбриона они даже работают, но очень короткое время — потом специальные белки их "выключают" для того, чтобы запустилась работа гомеозисных генов, специфичных только для птиц.

Но что если каким-то образом предотвратить эти выключения динозавровых генов? Ученые из из Университета Макгилла (США) под руководством Ханса Ларссона обнаружили, что на раннем этапе развития куриного эмбриона у зародыша есть хвост, похожий на рептильный. Но дальше в определенный момент работа генов, отвечающих за его формирование, заканчивается, и хвост исчезает. Доктор Ларссон и его коллеги несколько раз пытались блокировать деятельность белков, выключающих хвостовые гены. В конце концов им удалось это сделать, однако "хвостатый" цыпленок вскоре погиб, так толком и не сформировавшись.

По другому пути пошли онтогенетики Джон Фэллон и Мэтт Харрис из Висконсинского университета (США) Они, экспериментируя с мутантными куриными эмбрионами, заметили что у некоторых из них есть странные выросты на челюстях зародыша. Данные "шишки" при ближайшем рассмотрении оказались саблевидными зубами, которые были идентичны зубам эмбрионов аллигаторов и, что самое интересное, некоторых мелких юрских динозавров.

Позже выяснилось, что эти мутанты обладали рецессивным геном, который в норме убивает плод до рождения. Однако в качестве побочного эффекта своей деятельности этот ген включает другой, являющийся гомеозисным геном динозавров, отвечающий за формирование зубов. Заинтересовавшись данным феноменом, Фэллон и Харрис создали вирус, который вел себя подобно рецессивному гену, но не был смертельным для эмбриона. Когда его вводили в нормальные зародыши, у тех начинали расти зубы, и никаких вредоносных побочных эффектов при этом не наблюдалось. Однако вылупиться "зубастику" так и не дали — по закону США гибридные эмбрионы должны быть уничтожены через 14 дней после завершения эксперимента.

Однако наибольших успехов удалось достичь доктору Архату Абжанову из Гарвардского университета. Он вычислил, какие из гомеозисных генов динозавров отвечают за формирование типичной рептильной морды вместо птичьего клюва. Ему удалось также определить белки, которые "отключают" эти гены.

После этого Абжанов добавил в клетки эмбриона другие белки, блокирующие деятельность "выключателей", в результате чего последние перестали работать. В итоге динозавровые гены уже отключить было некому, и у цыпленка выросла вполне симпатичная мордочка, чем-то напоминающая крокодилью. При этом сам эмбрион не погиб — он продолжал активно развиваться. Однако после 14 дней пришлось, к великой досаде Абжанова, умертвить и его.

Все эти исследования говорят о том, что создание динозавров из птиц принципиально возможно. Правда, биологи до сих пор не знают всех гомеозисных генов, оставшихся у птиц от динозавров, однако установить это не так то уж и сложно — ведь есть "контрольная" группа, то есть крокодилы. Не изучены так же до конца все тонкости их работы, однако и это — всего лишь вопрос времени. Так что не исключено, что в ближайшем будущем генетикам все-таки удастся превратить птицу в небольшого оперенного динозаврика из рода Maniraptora , вроде тех, которые существовали в середине юрского периода.

Сразу же следует заметить, что данное существо, конечно же, не будет представителем вида, уже обитавшего на нашей планете — ведь его геном будет включать птичью ДНК, отсутствовавшую у классических динозавров. Это будет представитель уже нового вида, созданного людьми, однако имеющего строение и физиологию, характерную для настоящих динозавров.

Рекомендуем почитать

Наверх